Search results for "ATOM LASER"
showing 8 items of 8 documents
Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes
2008
We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.
Piecewise static Hamiltonian for an atom in strong laser field
2009
We show that it is possible to use a piecewise constant Hamiltonian to describe the main features of the dynamics of an atom interacting with a laser field. In particular we show that using this approximation we are able to give a good description of the ionization signal, of the HHG spectra and of the attosecond pulses generated by the radiating electron. Finally, we give an explicit formula to evaluate the ionization rate in the time dependent laser field. This formula, which is a generalization of the Landau formula for the ionization rate of an atom in a static electric field, fairly well reproduces the numerical ionization rates for a broad range of laser frequency and intensity. The m…
Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy
2019
Erbium 169Er is one of the most interesting radiolanthanides for new potential receptor-targeted β− therapy applications due to its low energy β− emissions, very low intensity ɣ rays and the possibility to use 68Ga or 44Sc as companion for diagnostic in a theranostics approach. Currently it can be produced in reactors through the neutron activation of highly enriched 168Er. The low specific activity of the produced carrier-added 169Er is limiting its use for receptor-targeted therapy. Nonetheless it is used for radiosynoviorthesis of small joints. The aim of this work is to develop a new large-scale production method for the supply of very high specific activity 169Er. Highly enriched 168Er…
Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium
2020
Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…
Analytical wave function of an atom in the presence of a laser pulse
2005
We study a simple model atom that has two bound states and a continuum of free states, interacting with a strong electromagnetic field. In our analysis we assume that only the continuum-continuum transitions occur- ring between degenerate free states are important for the dynamics of the atomic system; adopting this sim- plifying hypothesis, we show that it is possible to describe the time evolution of the atom by means of an infinite but discrete set of first-order differential equations describing a formal model atom that has two bound states and a degenerate quasicontinuum of states. Moreover, these equations depend on a small number of parameters of the bare atom and of the external las…
Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion
2017
Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…
High-order harmonic emission from a three-level atom in a laser field
1999
Abstract The spectrum emitted by a three-level atom in the presence of a weak laser field is given together with the population dynamics and the phase of the Fourier transform of the acceleration. Calculations show that the spectrum can be very different from that emitted by a two-level atom. When the trapping conditions are obtained, the coupling to the third level can result in a large change in the spectrum.
Dynamical Casimir-Polder interaction between an atom and surface plasmons
2013
We investigate the time-dependent Casimir-Polder potential of a polarizable two-level atom placed near a surface of arbitrary material, after a sudden change in the parameters of the system. Different initial conditions are taken into account. For an initially bare ground-state atom, the time-dependent Casimir-Polder energy reveals how the atom is "being dressed" by virtual, matter-assisted photons. We also study the transient behavior of the Casimir-Polder interaction between the atom and the surface starting from a partially dressed state, after an externally induced change in the atomic level structure or transition dipoles. The Heisenberg equations are solved through an iterative techni…